서울대학교 전기정보공학부 윤성로 교수 연구팀이 한글날을 맞아, 한국어 언어 모델의 사회적 편향(social bias) 진단을 위한 인공지능(AI) 학습용 데이터셋 ‘K-StereoSet’를 공개했다.
인공지능의 사회적 편향은 미래 인공지능 연구에서 전 세계적으로 중요한 키워드다. 국내에서도 올해 초 인공지능 기반 한국어 챗봇인 ‘이루다’로부터 성소수자, 인종, 장애인 등에 대한 차별 및 혐오성 표현이 발견돼 화제가 된 바 있다.
또한, 최근 4차산업혁명위원회와 과학기술정보통신부가 인간성을 위한 인공지능의 3대 원칙 중 하나로 ‘인간의 존엄성 원칙’을, 10대 핵심 요건 중 하나로 ‘다양성 존중’을 제시했을 만큼 윤리적인 인공지능에 대한 중요성이 커지고 있다.
이런 문제의식 하에 윤성로 교수팀이 이번에 공개하는 ‘K-StereoSet’은 영어 언어 모델의 사회적 편향을 진단하기 위해 MIT에서 공개한 ‘StereoSet’의 개발셋(development set)을 기반으로 한국적 현실에 맞춰 보완 개발한 것으로, 앞으로 지속적으로 확장될 예정이다.
▲ 연구를 진행한 서울대학교 윤성로 교수 연구팀 (사진출처=서울대학교)
약 4000개의 샘플로 구성된 원본 데이터셋은 먼저 네이버 파파고 API를 통해 1차적으로 번역한 후 다수 연구원이 독립적으로 번역 내용을 검수했다. 원래의 샘플 양식과 취지를 보존하도록 후처리(post-processing)를 진행해 구축됐다.
데이터 내 사회적 편향의 분야는 성별, 종교, 직업, 인종 총 네 가지 항목으로 구성돼 있으며, 편향성 진단을 위한 샘플 양식은 두 개의 카테고리로 분류돼 있다.
첫 번째는 문장 내 편향 진단 테스트를 위한 ‘intrasentence’ 양식이다. 빈칸 처리된 문장이 주어졌을 때 빈칸에 채워질 내용으로서 세 개의 보기 중 어느 것에 높은 점수를 부여하는지를 이용해 진단한다. 예를 들어, 한 문장 안에서 ‘심리학자’라는 직업의 사람이 ‘독선적’이라는 편향을 가졌는지를 확인할 수 있다.
두 번째는 문장 간 편향 진단 테스트를 위한 ‘intersentence’ 양식이다. 앞 문장(context)이 주어졌을 때 다음 문장으로서 세 개의 선택지가 주어지며 이들 중 어떤 문장에 높은 점수를 부여하는지를 이용해 진단한다. 예를 들어, 사람이 ‘히스패닉’이라는 문맥이 주어졌을 때, 다음 문장에서 그 사람이 ‘불법적인 시민’이라는 편향을 가졌는지 확인할 수 있다.
연구 책임자인 윤성로 교수는 “인공지능 기반의 한국어 언어 모델이 고도화되고 사업화될수록 윤리성 확보 및 편향성 제거를 위한 노력이 핵심적이며, 한글날을 맞아 보다 바른 한글을 구사하는 인공지능 기술 개발을 위해 K-StereoSet가 작지만 의미 있는 첫걸음이 되기를 기대한다”고 밝혔다.
글. 김효정 기자 needhj@naver.com | 사진 및 자료출처 = 서울대학교